Algebro-geometric methods for hard ball systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

for Typical Hard Ball Systems

We consider the system of N (≥ 2) hard balls with masses m1, . . . , mN and radius r in the flat torus TL = R /L · Z of size L, ν ≥ 3. We prove the ergodicity (actually, the Bernoulli mixing property) of such systems for almost every selection (m1, . . . , mN ; L) of the outer geometric parameters. This theorem complements my earlier result that proved the same, almost sure ergodicity for the c...

متن کامل

Algebro-geometric Feynman Rules

We give a general procedure to construct algebro-geometric Feynman rules, that is, characters of the Connes–Kreimer Hopf algebra of Feynman graphs that factor through a Grothendieck ring of immersed conical varieties, via the class of the complement of the affine graph hypersurface. In particular, this maps to the usual Grothendieck ring of varieties, defining motivic Feynman rules. We also con...

متن کامل

Algebro-geometric Invariant of Knots

In this paper, we define a new algebro-geometric invariant of 3-manifolds resulting from the Dehn surgery along a hyperbolic knot complement in S. We establish a Casson type invariant for these 3-manifolds. In the last section, we explicitly calculate the character variety of the figure-eight knot and discuss some applications, as well as the computation of our new invariants for some 3-manifol...

متن کامل

Hard Ball Systems Are Completely Hyperbolic

We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . , mN , radius r, moving uniformly in the flat torus T ν L = R /L · Z , ν ≥ 2. It is proved here that the relevant Lyapunov exponents of the flow do not vanish for almost every (N + 1)-tuple (m1, . . . , mN ;L) of the outer geometric parameters.

متن کامل

Hard Ball Systems Are Fully Hyperbolic

We consider the system of N (≥ 2) elastically colliding hard balls with masses m1, . . . , mN , radius r, moving uniformly in the flat torus TL = R/L · Z , ν ≥ 2. It is proved here that the relevant Lyapunov exponents of the flow do not vanish for almost every (N + 1)-tuple (m1, . . . ,mN ;L) of the outer geometric parameters.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2008

ISSN: 1078-0947

DOI: 10.3934/dcds.2008.22.427